
 FSA Modernization Partner
United States Department of Education

Federal Student Aid

Integrated Technical Architecture
Performance Testing Best Practices Guide

Task Order #69

Deliverable # 69.1.4

Version 2.0

June 27, 2002

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

2

Table of Contents

1 EXECUTIVE SUMMARY... 4

1.1 PURPOSE... 4
1.2 INTENDED AUDIENCE... 4
1.3 BACKGROUND.. 4
1.4 SCOPE... 4
1.5 ASSUMPTIONS .. 5

2 OVERVIEW... 6

3 PLANNING .. 7

3.1 PERFORMANCE TEST PLAN ... 7
3.2 IDENTIFICATION OF THE DIFFERENT RUN-TIME SCENARIOS... 7
3.3 PERCENTAGE OF CONCURRENT USERS TRAVERSING EACH BUSINESS PROCESS.................................. 8
3.4 TRENDS .. 8
3.5 STRESS TEST VS. LOAD TEST... 8
3.6 MEASURABLE GOALS ... 8
3.7 RESPONSE TIME.. 9
3.8 BUSINESS PROCESS ... 9
3.9 SCHEDULE .. 10

4 SCRIPTING ... 11

4.1 SYSTEM STABILITY.. 11
4.2 USER PACING ... 11

5 PERFORMANCE TEST EXECUTION .. 12

5.1 TUNING SESSION .. 12
5.2 PLAN ON A INFRASTRUCTURE TEST TO VERIFY NETWORK AND SERVER CAPACITY......................... 12
5.3 ESTABLISHING BASELINE ... 12
5.4 RAMPING UP USERS .. 13

6 ANALYSIS .. 14

6.1 SERVER LEVEL BOTTLENECK IDENTIFICATION .. 14
6.2 USE THE RESOURCE ANALYZER... 15
6.3 USE “VERBOSEGC” IN THE APPLICATION SERVER COMMAND LINE .. 15
6.4 SET THE MAXIMUM HEAP SIZE EQUAL TO THE MINIMUM HEAP SIZE .. 15
6.5 MONITOR THE WEB SERVER PROCESSES .. 15
6.6 CPU, MEMORY AND NETWORK UTILIZATION .. 16
6.7 MONITOR THE APPLICATION SERVER’S STANDARD OUT AND STANDARD ERR LOGS. 16

7 APPLICATION PROFILING ... 17

7.1 PROFILING IN STAND-ALONE ENVIRONMENT ... 17
7.2 RESTART APPLICATION SERVER BEFORE EACH SESSION .. 17
7.3 FORM TEST SCENARIOS .. 17

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

3

7.4 GARBAGE COLLECT AND ESTABLISH BASELINE... 17
7.5 PROFILING OVER EXTEND PERIODS OF TIME.. 17
7.6 USING ”–VERBOSEGC” ... 17

8 REFERENCES ... 18

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

4

1 Executive Summary

The Integrated Technical Architecture (ITA) Performance Testing Best Practices Guide is a document
that will guide FSA application teams through the process of performance testing their FSA web based
applications. Using industry standard tools and proven methodologies, application teams can prove
scalability and availability goals specified by FSA application requirements, as well as detect load
based problems that go undetected in functional and integrated testing.

The goal of an application performance test is to focus on three core areas:

1) Application scalability
2) Application performance
3) Infrastructure assessment

With these goals in mind, an application team can determine the degree of tuning required, decide on
capacity limits, forecast availability and maintenance plans, and determine the maximum system
performance with the optimum configuration. By determining these factors, production migrations
become less complicated and support costs are dramatically reduced.

1.1 Purpose
The purpose of this document is to collect and document the Best Practices that have been identified
and used for performance testing within the WebSphere environment at FSA using Mercury
Interactive’s LoadRunner. These practices are assembled from recommendations provided by Mercury
Interactive, IBM and Accenture through their in-depth experience with E-Commerce and its
implementation within Java based Application Servers.

1.2 Intended audience
The ITA Performance Testing Best Practices Guide is for technical architects, designers, application
developers, testers and performance administrators who are responsible for performance testing Java-
Based solutions within the SFA WebSphere environment. The document assumes that the reader is
knowledgeable in Java and the WebSphere Application Server and has access to the Java 2 Software
Development Kit (JDK) and WebSphere reference documents.

1.3 Background
In assisting with the performance testing of multiple FSA applications, the ITA team determined the
necessity of collecting the Best Practices white papers on performance testing and administration of
applications that run within the FSA WebSphere environment. This allows FSA to benefit from
previous work done at other WebSphere implementations that have carried out benchmarking and
performance testing work to identify best practices. These best practices help FSA design their
applications to extract maximum performance from WebSphere and to ensure quality and scalable web
sites.

1.4 Scope
These guidelines will provide specific examples and recommendations for running performance tests
in a highly analytical and efficient process. This document does not include the application code level

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

5

best practices. ITA best practice Release 2 has application code level best practices (eg. session, servlet,
Java code best practices).

1.5 Assumptions
The current WebSphere environment at FSA includes WebSphere 3.5.5, its associated Web Server (IBM
HTTP Server 1.3.12), Oracle databases (8.1.7), Java Development Kit (1.2.2), LoadRunner 7.01, and
JProbe 3.0. These recommendations may change with later releases of these products.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

6

2 Overview

There are four phases in doing the application performance test using Load Runner: Planning,
Scripting, Execution, and Analysis and Tuning. The following diagram shows the performance test life
cycle.

The first stage, which is the planning stage, includes test preparation, understanding the application
architecture, and a kick-off meeting. The second stage is the scripting stage where the load runner
scripts are created. The third stage is the execution stage where the performance test is executed. The
execution stage has multiple iterations where the test is run, the system is tuned, the test is analyzed,
and the scripts fixed if necessary. The fourth stage is the analysis stage where the test results will be
analyzed and the reports created. Each of these steps and its related best practices is discussed in the
following sections of this document.

The ITA team also utilizes JProbe to do application profiling. ITA recommends that the application
team should profile their application before the load test. Application profiling best practices can be
found in Section 7 of this document.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

7

3 Planning

In the planning stage includes understanding the application architecture and establishing the
performance test objectives. Thus, the performance test planning should run parallel to the system
development. The performance test plan document should be produced at the end of the planning
stage.

3.1 Performance test plan
ITA and the application team should work together on this document. This document should include a
diagram and a written summary that details the performance test environment and any external
interfaces that might exist. External interfaces could be an Oracle database, MQSeries on the
mainframe, a search engine or an email engine. This diagram is used to ensure that the performance
test does include all details that production is likely to feature. It should also outline the test goals, test
dates, test scenarios, and business processes.

3.2 Identification of the different run-time scenarios
Users do different things on a web Site. The goal of this function is to identify a reasonable number of
processes that users will execute on a web site so that the real world is simulated. Collectively,
scenarios for the application will address most functions expected by a web site that is undergoing
performance testing. To gather the different scenarios, the following critical questions need to be
asked.

• What business functions are critical to the function of the application?
• What actions do end users most frequently use?
• Who are the users?
• Which business functions are database intensive?

Additional business process selection is driven by the impact of the processes on different system
components. In most systems, 80%of the load is created by 20% of the transactions. In a typical system,
repetitive business processes create the most significant load. Normally it is optimal to select three to
ten business transactions that reflect critical end-user actions. Critical business functions for a Web site
may include:

• Site browsing
• Searching
• Registration

Another factor to consider and document at this point is business process length. Each scenario needs
a time associated with how long a user takes to complete a business process. These times are usually
kept short, under five minutes, in comparison to actual user session length on a web site. This is
because a real user usually performs a combination of the business processes on the actual site, as it is
assumed that many short scripts utilized together represent end users that may be on the system
longer. Using the previous example:

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

8

• Site browsing (5 minutes)
• Searching (3 minutes)
• Registration (3 minutes)

3.3 Percentage of concurrent users traversing each business process
To accurately simulate real world conditions on a web server, the performance plan should have an
understanding of how many users do which business process. An example would be:

• Site browsing (50%)
• Searching (15%)
• Registration (35%)

If previous versions of web sites exist then this information can be gathered via a Web analysis tool
such as Web Trends.

3.4 Trends
It is important to recognize any peak periods that might require extra capacity or off-peak periods
where capacity can be withdrawn. An example would be if an application had a steady state that
lasted eleven months but a peak period that lasted one month but was three times the steady state. It is
important to test at the peak for capacity limits and test at steady state for capacity planning.

3.5 Stress Test vs. Load Test
Load testing is an evaluation of system performance under normal conditions, which includes testing
the targeted number of concurrent users supported by the application’s configuration to meet the
application goal. Stress testing is the determination of the application’s limitations and breaking point.
It is imperative that both stress testing and load testing are performed on an application.

An example of load testing is if an application that may have a requirement for supporting “250
concurrent users.” This requirement can be verified by a load test which ascertains whether or not 250
concurrent users can be supported. If the application meets the requirement then the goal is met.

Stress testing, on the other hand, explores the limitations of an application. Using the requirement
from the previous example – 250 concurrent users – stress testing would determine the number of users
in excess of 250 that the application would support. Applications could reach their breaking point at
300 users or 1000 users. It is therefore significant to establish and understand the limitations of each
application, as stress testing is closely linked to the notion of scalability. An application’s scope for
scalability can be deduced from the results obtained from application stress testing.

3.6 Measurable Goals
The performance test plan should include goals that state capacity and response time limits that need
to be achieved during the performance test. These goals can be operationally oriented (e.g., the ability
to maintain 3000 concurrent users) or business-oriented (e.g., ability to handle 1000 invoices an hour).
Either way, goals should be written in such a way that they are measurable.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

9

An example of a test goal would be:

The performance test for the Portals application will verify that 200 concurrent users are able to
perform a registration with response times less than 30 seconds.

 There should be at least one goal for each business process identified.

3.7 Response Time
Response time is defined as the duration of a server to response to a user request. If an application has
a slow response time then it risks losing its customers. Web sites that permit users to transact business
must offer their services in a way that meets the users’ needs. This means “performance” is usually
measured in response time to a user’s request. In a web application the major factors that contribute to
download time are page size in kilobytes, number and complexity of items, number of servers
accessed, and whether SSL is used. Response time can be ranked as following:

Seconds to load Ranking
Less than 10 Excellent
10-15 Very good
15-20 Good
20-25 Adequate
25-30 Slow
Over 30 Unacceptable

This is just a general guideline. An application might have a requirement where it is expected to load a
search page in less than 5 seconds or some reports might take 3 to 4 minutes to load which might be
acceptable.

An application should consider their user types (LAN vs. modem connection). If most of the users
connect to the site from a typical dial-in connection then design must optimize for them to assure their
visit is successful. Load Runner has a capability to simulate the users coming via the dial-up
connections.

3.8 Business Process
For an effective performance test, the test team needs to choose meaningful transactions to measure.
The business processes should be broken up into logical steps, with each step being equivalent to a
transaction. The transactions that are defined should map closely to the objectives of the tuning
session. For example, if one of the objectives is to ascertain the average response time required in
searching for an item from a database, then it is necessary to have a transaction that measures this step
in the business process.

Business analysts or functional experts should be consulted to determine where the performance
measurements are needed. Some common transaction measurements are: user actions that insert,
update, search the database, heavy graphic manipulation, actions which cause user authentication,
actions which create and hold server connections, audio or video streaming, file downloads, or any
other processes that may be considered system resource intensive. These transactions are usually tied

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

10

to Servlet calls (depends upon the application architecture). Tools like Load Runner usually present
transaction response times so that identified transactions may be tracked.

3.9 Schedule
It is essential to review the following setup and scheduling guidelines before the tuning session begins:
If the application is planning to use the ITA team to do their performance test then the application team
needs to get on the ITA team performance test schedule. The ITA team performance test schedule gets
booked very quickly so the application team lead needs to set up a meeting with the ITA team lead to
get on the ITA schedule so that ITA can determine all the performance test hardware, software, and
environment for a particular application. During the preparation phase it is critical to consider any
data preparation necessary such as emptying database tables, and restarting web servers.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

11

4 Scripting

ITA uses the functional test script provided by the application team to generate the load runner scripts.
Functional scripts outline step-by-step actions that a user needs to take to complete a business process.
Functional experts who understand the business processes that are being scripted should be available
to answer questions and resolve any process issues. The script creation process is one of the most
important steps in the entire performance test process. ITA uses Load Runner Virtual User Generator
(VuGen) development kit to record the performance test scripts. Once a script is recorded, it is
necessary to make certain modifications to support dynamic values, volume data, data correlations,
parameterization, transaction demarcation iteration looping and other virtual users options to make
them behave like real users.

4.1 System Stability
Before creating the scripts the application must be functionally stable. Application changes should be
kept to a minimum during the scripting process. Changes in the user interface, server functionality or
database data during the scripting process may cause working scripts to fail.

For example, if requirements change and an information screen is altered so that a social security
number is a required field, then a script which has been previously recorded without the social security
number will no longer work when replayed against the new version of the application. This can also
be true with changes to business rules or the underlying database. A script may also rely on preloaded
data that is expected to be in the system. For example, if a script orders a product, such as a laser
printer, and the data in the product table is deleted, then the script will fail when it attempts to order a
part that does not exist. While the application is undergoing performance testing, frequent system
changes can cause severe impact to the project timeline and should be avoided.

4.2 User Pacing
User pacing is defined as an average time taken for users to finish a business process. User pacing is
important in order to simulate real-world conditions. If the system is expected to support 1,000
concurrent users doing work, the test team must ask, “at what pace do they perform that work?” An
average user may stop and read product descriptions, the home page and other similar pages for 30 to
45 seconds before the next mouse click. It may take a user an average of 60 seconds to enter the
information on a registration page before pressing the submit button. The test team can vary this
pacing (known as think times) in the script from static think times, such as 5, 10, or 15 seconds, or set
them as random, with a range such as “wait 5 to 15 seconds from when the home page appears to the
time the search link is clicked.”

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

12

5 Performance Test Execution

Once the performance test scripts are ready then the next step would be to execute the test.
Performance testing is typically scheduled into three-hour tuning sessions. These are normally
arranged during off-hours or low-traffic hours to minimize impact on users during normal business
hours, if the performance test and production environment are using the same resources. Otherwise, a
performance test can be performed during business hours as long as it does not share the production
environment and resources.

Usually a conference call is set up so that all teams may communicate during the test. Since
performance testing is a team effort all parties are expected to have representatives on hand during the
performance test (e.g., Database Administrator, Network Administrator, System Administrator,
Developer, Business Analyst or Functional Expert, Web and Application Server Administrator, and
Technical Architect etc.). A small application must have at least three performance tests, but it is not
unusual to have more tests to resolve problems, especially for larger applications. Several test practices
apply to implementation, which are discussed below.

5.1 Tuning Session
Tuning is the process of performing enhancements to an application or configuration to improve
response time. A tuning session allows sufficient time for proper user ramp-up, stabilization, real-time
analysis and bottleneck identification. This is the point where the proper planning, script creation, and
data preparation is realized. If fixes are applied during a test, they should be applied incrementally
(i.e., one at a time) and then verified. Multiple fixes could cause multiple problems if applied
simultaneously.

5.2 Plan on a Infrastructure Test to verify network and server capacity
The first area examined during the testing process is the infrastructure. The infrastructure precedes the
application architecturally so any performance issues in the infrastructure will impact the application.
This approach is essential since it allows the test team to certify the infrastructure before concentrating
on the system being tested. The testing team essentially divides the system, allowing proper diagnosis
of any performance bottlenecks for all components from the end user up to, but not including, the web
servers. Infrastructure testing will establish the capacity and stability of the load balancer, firewall,
routers, switches, network cards, ISP service level and bandwidth capacity. The infrastructure test is
usually accomplished by generating a maximum number of users to retrieve a single GIF or JPEG file.
If problems are found, it may take multiple iterations of infrastructure tuning to diagnose, solve and
verify that the proper fix has been applied.

5.3 Establishing Baseline
Once the infrastructure test has been conducted successfully and the bandwidth capacity is verified,
server and application testing can begin. Application performance testing consists of multiple tests in
order to tune the components inside the firewall. The first test is a baseline test to establish the current
performance capacity and scalability of the system. The typical scenario (business process mix) is used
in this stage and the number of running users is slowly increased until performance becomes
unacceptable. The back-end systems, such as Web servers, application servers, database, legacy, etc.,

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

13

are closely monitored at this point. Memory, paging/swapping, CPU, processes, connections, queues,
cache, database buffer pools, and other system usage must be watched to identify trends, subtle
inefficiencies, and abnormalities that can affect end-user response time as the number of users are
increased.

5.4 Ramping up users
Once the infrastructure test is completed and the baseline is established, normal application testing and
tuning begins. The ramp-up in the number of users that is running initially must be done in a
consistent and repeatable manner. The systematic increase of users cannot be rushed or the initial
baseline test results may not be valid. The number of users must be gradually increased so as not to
cause unrealistic system spikes in performance. A typical ramp up strategy is as follows:

Run one user of each script and carefully record the response times for each transaction. Allow each
user to make more than a single iteration. This provides a few data points for each transaction and
allows for proper transaction averaging. This will establish a baseline for performance under optimal
conditions.

Ramp-up users 10% in one minute intervals or LoadRunner has the facility to ramp-up users
automatically at the rate of 50 users every 90 seconds. Testers are expected to maintain vigilance in
observing performance statistics while the test is underway.

Repeat this process slowly, increasing the number of users until the team finds a proper “step level” for
the user ramp up. This is different for each system, but experience indicates that each step be no more
than 5 to 10% of the desired capacity. For example, a system that is expected to handle 1,000
concurrent users might be increased in 50-user increments. If the baseline established indicates that the
system can handle a higher user increment, then this increment should be used on subsequent tests.

LoadRunner has an option whereby user ramp-up can be stopped, if a system is not acting as expected
or if performance degradation is observed. Under these circumstances the ramp-up should be stopped
and the problems that led to decreased performance should be analyzed. This does not imply that the
performance test itself should be stopped, only that performance degradation should be addressed.

Unless the particular test scenario is deliberately attempting to test a sudden increase in users, such as
the opening bell on the stock market or a similar event, users should always be increased gradually.
Once the baseline is established and the system has gone through a series of tuning cycles, these kinds
of stress tests can be benchmarked.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

14

6 Analysis
After executing the performance test it will help to identify the performance bottlenecks. After each
test cycle some analysis should be done and the problems fixed before running the next cycle. ITA
team follows the following performance test best practices.

6.1 Server Level Bottleneck Identification
One reason for doing a performance test is to identify bottlenecks that only exist in a load driven
scenario. Each transaction is measured during a tuning test: home page loading, links, data submits,
static pages, dynamic pages, data searches, report creation, logins, etc. If the test team sees particular
transactions beginning to have performance degradation while other transactions continue to perform
well, they can refer the transaction to “component-level mapping” that they performed during the
planning stage to assist in isolating the bottleneck. The performance test team first must determine
which server or interaction between servers may be causing the bottleneck before they can isolate the
particular tuning issue. They do this using specific tier-level stressing to determine if the tier is
performing at maximum capacity. To gather this information, the tuning specialist can utilize server
statistics, application logs, real-time performance monitors and other data that will lead them to the
server tunable that needs adjustment. If a particular tier, such as Web server cluster, is not performing
well, they can drill down to do individual component tuning and optimization. In the FSA ITA
environment, WebSphere has a Resource Analyzer, which presents the Java Development Kit’s 1.2.2
performance metrics on Memory, Orb connections, servlet and data-source statistics.

For example suppose the performance test team notices that the “search” function is taking quite a bit
of time, and that all the hardware metrics for the entire system are under 50% utilization. Since the
search function utilizes the entire system the performance test team would narrow the test.

The performance test team can add a specific Web server test now to determine if the Web server is
slow to respond. If the web server response is faster than the “search” response then the team would
deduce that the Web server and the firewall are not the culprits. The team would replace the Web
server test with an application test and run the performance test again. If performance from the
application server is better than the “search” then the team would deduce that the firewall, web server,
and application server can be excluded. Now, the performance test team would create a different
database test to determine if it is in fact the database itself or just the “search” function. Although
many architectures are much more complicated and require many more steps, this is the fundamental
approach to tier-by-tier bottleneck isolation.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

15

6.2 Use the Resource Analyzer
WebSphere has a tool named Resource Analyzer, which presents the Java Development Kit’s 1.2.2
performance metrics on Memory, Orb connections, servlet and data-source statistics. These statistics
are helpful in understanding if a memory shortage is occurring or a database bottleneck has occurred.
The resource analyzer data can be logged in real time or replayed into a log for later play back. The
resource analyzer captures Servlet and data source level information.

6.3 Use “verbosegc” in the Application Server command line
The Java heap size is the amount of memory dedicated to the Java Virtual Machine (JVM) for
application run time execution. It is critical to the performance of the application whether the heap size
is properly sized for the application that is being executed. If the number of users is too great for the
JVM, then the application will consume too much memory and the WebSphere application server will
not be able to continue.

To determine the heap size, a baseline stress test needs to be run, with verbosegc indicated in the JVM
command line. This parameter in the command line informs the JDK to write out the amount of
memory freed during a garbage collection session. A garbage collection session is the JDK sweeping
through all of the objects that been created within the heap and determining whether any objects can be
freed so that the memory is returned to the heap for reuse. If after a full garbage collection, the
collector can return 60% to 80% of the heap as free memory then the amount of memory allocated to the
heap is correct. If the amount of memory is greater than 80%, administrators should consider lowering
the heap size. If the amount of memory freed is less than 60%, administrators should raise the heap
size. If the amount of free memory under maximum load is greater than 90% then administrators
should consider lowering the heap size.

6.4 Set the maximum Heap size equal to the minimum Heap size
The heap size can be specified in terms of a minimum size and maximum size. The minimum and
maximum size configuration allows the Java heap to increase in size up to the maximum specified.
Since performance testing should be focused on application runtime performance and tuning, the
minimum heap size is set to equal the maximum heap size.

6.5 Monitor the Web Server Processes
IBM Http Server (IHS), which is a derivative of the Apache web server, is the standard FSA Web Server
for the ITA project. IHS is a process driven Web Server, which means that as the load increases on the
Web Server, Apache will use a proprietary algorithm to increase the number of listening processes to
handle the workload. Apache has a configuration ceiling for this function so that the web server
doesn’t overuse the hardware that supports it. The configuration parameter is called MaxClients and is
configured within the file apacheroot/conf/httpd.conf. This parameter is critical to IHS performance
and must be tuned properly by the IHS administrator. Once IHS reaches the maximum number of
Httpd processes allowed by MaxClients, response times for the web site will rise. An administrator can
usually determine how many Httpd Daemons are running on a Unix server by issuing the following
command:

ps –ef | grep httpd | wc –l

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

16

Determining the proper amount for MaxClients is critical. Experience has shown that a Web Server can
undergo bottlenecks on many factors such as memory, CPU, and network. It is best for performance to
keep all Httpd Daemons residing in real memory and not raise CPU utilization by having the operating
system swap processes to disk. Included within each Httpd process is a TCP Cache that caches static
pages. That means that each Httpd Daemon can take up to 10MB worth of real memory. Thus if
MaxClients are set to 1024, the web server could consume up to 1GB of memory.

6.6 CPU, Memory and Network Utilization
As mentioned in the preceding section above, monitoring and understanding memory and CPU
utilization of the web server and application server are a must. If the web server or application server
exceeds the amount of real memory that is available in the hardware then the operating system will
attempt to page processes out to disk. This operation can dramatically affect performance of the
servers.

6.7 Monitor the Application Server’s standard out and standard err logs.
Monitoring the standard out and standard error logs are crucial during a stress test. If some strange
behavior is happening during a test then there are usually some clues in the standard out or standard
error logs. Depending upon whether an application has a logging framework or not, the application
may have its own log or just write to WebSphere’s standard out log.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

17

7 Application Profiling
ITA uses JProbe to do application profiling. JProbe captures application run time behavior and help
developers to identify performance bottlenecks. JProbe identifies the loitering objects, unused code,
and memory usage in an application. The following is a list of the best practices for conducting
performance profiling:

7.1 Profiling in Stand-alone Environment
The application should not share a development and a profiling environment. The code should be
stable while profiling an application. Also, an application server needs to be restarted often throughout
the whole profiling session which might hinder other developers working in the same environment.

7.2 Restart Application Server before each Session
Different profiling sessions have different test goals and criteria. To ensure that a representation of the
application’s behavior is captured, it is recommended to restart the application server before each
session. Restarting the application server before each session guarantees a clean application server
environment with resources fully available for a common starting point. A common starting point also
serves as a controlled variable that allows developers to monitor the effects of the changes that are
made.

7.3 Form Test Scenarios
Profiling tools provide testers with a picture of an application’s run-time behavior. They help to
identify problem areas. It is the tester’s knowledge of the application that locates a potential bottleneck
of the application. Thus, it is important for testers to understand the normal memory usage and
performance behavior and use this knowledge to form test scenarios including expected end results.
Using test scenarios, out-of-ordinary (negative testing) phenomena can be identified at the end of each
session and serve as the starting point for further performance tuning.

7.4 Garbage Collect and Establish Baseline
It is important to establish a baseline within each session to see the effects of the test harness. Part of
setting the baseline is to execute a garbage collection. By doing so, testers can see which objects are
created and destroyed during the profiling session. The left over objects can then be compared to the
tester’s expectation to determine whether a memory leak has occurred.

7.5 Profiling over Extend Periods of Time
A memory leak problem is not noticeable until the application is run for an extended period of time. It
is, therefore, recommended to run test harnesses for at least an hour in order to extract a reasonable
representation of memory usage. This can also be achieved by using Load Runner and running the test
for an hour.

7.6 Using ”–verbosegc”
“-verbosegc” is a command line argument that can be switched on by the testers to log garbage
collection in application’s "stderr.log file.” It is also another way to monitor memory usage during the
profiling session.

Performance Testing Best Practices Guide

Version 2.0 69 – 69.1.4

18

8 References

1. http://www.mercuryinteractive.com “ActiveTune Production Tuning Service”.
2. http://www7b.software.ibm.com “Design Pages for Performance”.
3. http://www7b.software.ibm.com “Managing Web Site Performance”.
4. http://www.sitraka.com/jprobe

